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Related works
• Monotonic methods: only cutting, or only filling

• [Chen et al. 2006], [Shattuck et al. 2001], [Han et al. 2002], [Zhou et al. 2007], [Nooruddin et al. 2003]

[Bischoff et al. 2002], [Kriegeskorte et al. 2001], [Sczymzak et al. 2003], [Chambers et al. 2018]

• Result in very large geometric changes
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Related works
• Non-Monotonic methods: both cutting and filling

• [Wood et al. 2004], [Kriegeskorte and Goebel 2001], [Ségonne et al. 2007], [Ju et al. 2007]

• Existing methods apply greedy heuristics and can still result in excessive changes
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Contributions
• A non-monotonic algorithm 

• Attempts to find the globally optimal set of cuts and fills that maximally simplifies 
topology while minimizing geometric changes
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Input
• Shape represented as a cell complex

• 2D: pixels, triangles, etc.

• 3D: voxels, tetrahedra, etc.

• Cuts and fills
• Cells to be removed or added to the shape
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• Each cut or fill cell is associated with a 
geometric cost

• Can be obtained using existing monotonic 
simplification methods



Goal
• Find a subset of the cuts and fills that

• Minimizes the total number of topological features (1st priority)

• Minimizes the total geometric cost (2nd priority)

Input
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Graph formulation
• Representing partitioning of space into regions of different types

𝑐1𝑓1

𝑓2

𝑘1

𝑛1𝑐2

13

𝑐1

𝑐2

𝑓1

𝑓2

𝑛1

𝑘1

• Cut and fill nodes: connected components of cuts and fills

• Kernel nodes: connected components of shape minus cuts

• Neighborhood nodes: connected components of background minus fills



Graph formulation
• 1/0 labelling of nodes represents selection of cuts and fills

• 1-labelled fill nodes and 0-labelled cut nodes are selected

• Kernel nodes are labelled 1, neighborhood nodes labelled 0
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Graph formulation
• A node-wise cost is defined for each cut or fill node

• Obtained from the Euler characteristic and geometric cost of the node
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Graph formulation
• Problem: Find a 1/0 labelling that minimizes the sum of:

• Number of connected components of the 1-labelled and 0-labelled subgraphs

• Total labelling costs of all nodes

# 1-labelled components: 1

# 0-labelled components: 1
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• Treat connectivity as constraints, instead of an energy term

Graph Labelling

17

• Constrain both 0/1-labelled subgraphs to be as connected as possible

• Solve the connectivity-constrained labelling problem using Steiner Tree



• Reachable sets
• A set of kernel (resp. neighborhood) nodes that are connected when all cut and fill 

nodes are labelled 1 (resp. 0).

Graph Labelling
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• Reachable sets
• A set of kernel (resp. neighborhood) nodes that are connected when all cut and fill 

nodes are labelled 1 (resp. 0).
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• Reachable sets
• A set of kernel (resp. neighborhood) nodes that are connected when all cut and fill 

nodes are labelled 1 (resp. 0).

• Such that any reachable set of kernel (resp. neighborhood) nodes are connected in 
the 1(resp. 0)-labelled subgraph

Graph Labelling
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• As-connected-as-possible (ACAP) labelling
• Minimizes the total labelling cost

• Such that any reachable set of kernel (resp. neighborhood) nodes are connected in 
the 1(resp. 0)-labelled subgraph

Graph Labelling
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• As-connected-as-possible (ACAP) labelling
• Minimizes the total labelling cost

• Such that any reachable set of kernel (resp. neighborhood) nodes are connected in 
the 1(resp. 0)-labelled subgraph

Graph Labelling
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• ACAP labelling as Node-Weighted Steiner Tree (NWST) problem
• Solution of ACAP labelling, if exists, can be found by NWST on an augmented graph

Graph Labelling
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• ACAP labelling may not have a solution
• An example is a double-articulation node

Graph Labelling
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• ACAP labelling may not have a solution
• An example is a double-articulation node

Graph Labelling
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• ACAP labelling may not have a solution
• An example is a double-articulation node
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• ACAP labelling may not have a solution
• An example is a double-articulation node

• NWST would return a conflicting label of a cut/fill node

Graph Labelling
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• Iterative labelling

Graph Labelling
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• Iterative labelling
• Greedily label double-articulation nodes

Graph Labelling
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• Iterative labelling
• Greedily label double-articulation nodes

Graph Labelling
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• Iterative labelling
• Greedily label double-articulation nodes

• Solve ACAP labelling (via NWST) 

Graph Labelling
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• Iterative labelling
• Greedily label double-articulation nodes

• Solve ACAP labelling (via NWST) 

Graph Labelling
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• Iterative labelling
• Greedily label double-articulation nodes

• Solve ACAP labelling (via NWST) 

• Return the solution if no node has conflicting labels; otherwise greedily label 
such node, and repeat

Graph Labelling
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Results
• Input shapes represented as voxels

• Cuts and fills computed by two different (monotonic) methods: 
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Results
• Input shapes represented as voxels

• Cuts and fills computed by two different (monotonic) methods: 
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Results
• Input shapes represented as voxels

• Cuts and fills computed by two different (monotonic) methods: 
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Results
• Hip model (inflation/deflation cuts and fills)
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Results
• Heart CT Scan (inflation/deflation cuts and fills)
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Results
• Sorghum Panicle CT Scan (inflation/deflation cuts and fills)
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Results
• Corn root CT Scan (inflation/deflation cuts and fills)
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Conclusion
• Summary: a global optimization algorithm which attempts to maximally 

simplify topology, while minimizing geometric change
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• Explore more effective and efficient optimization methods

• Compute better cuts and fills

• Allow user control over the target topology
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Conclusion
• Summary: a global optimization algorithm which attempts to maximally 

simplify topology, while minimizing geometric change

• Future work:
• Explore more effective and efficient optimization methods

• Compute better cuts and fills

• Allow user control over the target topology

• Website: https://danzeng8.github.io/topo-simplifier/
• Paper, code, examples, discussion
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