
To cut or to fill: a global optimization
approach to topological simplification

DAN ZENG 1, ERIN CHAMBERS 2, DAVID LETSCHER 2, TAO JU 1

1 Washington University in St. Louis
2 Saint Louis University

1

CT Scan

Motivation

2

Point cloud

Motivation

3

Point cloud
(Poisson Reconstruction)

CT Scan
(Iso-surface)

Motivation

4

Point cloud
(Poisson Reconstruction)

CT Scan
(Iso-surface)

Connected Components

Motivation

5

Connected Components

Handles

Point cloud
(Poisson Reconstruction)

CT Scan
(Iso-surface)

Motivation

6

Connected Components

Handles

Cavities

Point cloud
(Poisson Reconstruction)

CT Scan
(Iso-surface)

CavityHandleConnected Components

Cutting

Filling

Cutting and Filling

7

Related works
• Monotonic methods: only cutting, or only filling

• [Chen et al. 2006], [Shattuck et al. 2001], [Han et al. 2002], [Zhou et al. 2007], [Nooruddin et al. 2003]

[Bischoff et al. 2002], [Kriegeskorte et al. 2001], [Sczymzak et al. 2003], [Chambers et al. 2018]

• Result in very large geometric changes

8

Input Monotonic
(filling only)

Monotonic
(cutting only)

Related works
• Non-Monotonic methods: both cutting and filling

• [Wood et al. 2004], [Kriegeskorte and Goebel 2001], [Ségonne et al. 2007], [Ju et al. 2007]

• Existing methods apply greedy heuristics and can still result in excessive changes

9

Input Monotonic
(filling only)

Monotonic
(cutting only)

Non-monotonic

Contributions
• A non-monotonic algorithm

• Attempts to find the globally optimal set of cuts and fills that maximally simplifies
topology while minimizing geometric changes

Input Monotonic
(filling only)

10

Monotonic
(cutting only)

Non-monotonic Ours

Input
• Shape represented as a cell complex

• 2D: pixels, triangles, etc.

• 3D: voxels, tetrahedra, etc.

• Cuts and fills
• Cells to be removed or added to the shape

11

Fills

Cuts

• Each cut or fill cell is associated with a
geometric cost

• Can be obtained using existing monotonic
simplification methods

Goal
• Find a subset of the cuts and fills that

• Minimizes the total number of topological features (1st priority)

• Minimizes the total geometric cost (2nd priority)

Input

12

components:

cavities:

geometric cost:

2

1

0

Only cutting

1

0

16

Only filling

1

0

21

Optimal

1

0

2

15

1

20 1

Graph formulation
• Representing partitioning of space into regions of different types

𝑐1𝑓1

𝑓2

𝑘1

𝑛1𝑐2

13

𝑐1

𝑐2

𝑓1

𝑓2

𝑛1

𝑘1

• Cut and fill nodes: connected components of cuts and fills

• Kernel nodes: connected components of shape minus cuts

• Neighborhood nodes: connected components of background minus fills

Graph formulation
• 1/0 labelling of nodes represents selection of cuts and fills

• 1-labelled fill nodes and 0-labelled cut nodes are selected

• Kernel nodes are labelled 1, neighborhood nodes labelled 0

14

𝑐1

𝑐2

𝑓1

𝑓2

𝑛1

𝑘1

𝑐1𝑓1

𝑓2

𝑘1

𝑛1𝑐2 1-labelled

0-labelled

Graph formulation
• A node-wise cost is defined for each cut or fill node

• Obtained from the Euler characteristic and geometric cost of the node

15

𝑐1

𝑐2

𝑓1

𝑓2

𝑛1

𝑘1

𝑐1𝑓1

𝑓2

𝑘1

𝑛1𝑐2 1-labelled

0-labelled

Graph formulation
• Problem: Find a 1/0 labelling that minimizes the sum of:

• Number of connected components of the 1-labelled and 0-labelled subgraphs

• Total labelling costs of all nodes

1-labelled components: 1

0-labelled components: 1

16

1-labelled

0-labelled𝑐1

𝑐2

𝑓1

𝑓2

𝑛1

𝑘1

• Treat connectivity as constraints, instead of an energy term

Graph Labelling

17

• Constrain both 0/1-labelled subgraphs to be as connected as possible

• Solve the connectivity-constrained labelling problem using Steiner Tree

• Reachable sets
• A set of kernel (resp. neighborhood) nodes that are connected when all cut and fill

nodes are labelled 1 (resp. 0).

Graph Labelling

18

• Reachable sets
• A set of kernel (resp. neighborhood) nodes that are connected when all cut and fill

nodes are labelled 1 (resp. 0).

Graph Labelling

19

𝑘2

𝑐1

𝑛1

𝑘3

𝑛2

𝑓1

𝑘1

{ k1, k2 } and { k3 } are reachable sets

• Reachable sets
• A set of kernel (resp. neighborhood) nodes that are connected when all cut and fill

nodes are labelled 1 (resp. 0).

Graph Labelling

20

𝑘2

𝑐1

𝑛1

𝑘3

𝑛2

𝑓1

𝑘1

{ k1, k2 } and { k3 } are reachable sets {n1, n2} are in reachable set

𝑘2

𝑐1

𝑛1

𝑘3

𝑛2

𝑓1

𝑘1

• Reachable sets
• A set of kernel (resp. neighborhood) nodes that are connected when all cut and fill

nodes are labelled 1 (resp. 0).

• Such that any reachable set of kernel (resp. neighborhood) nodes are connected in
the 1(resp. 0)-labelled subgraph

Graph Labelling

21

𝑘2

𝑐1

𝑛1

𝑘3

𝑛2

𝑓1

𝑘1

{ k1, k2 } and { k3 } are reachable sets {n1, n2} are in reachable set

𝑘2

𝑐1

𝑛1

𝑘3

𝑛2

𝑓1

𝑘1

• As-connected-as-possible (ACAP) labelling
• Minimizes the total labelling cost

• Such that any reachable set of kernel (resp. neighborhood) nodes are connected in
the 1(resp. 0)-labelled subgraph

Graph Labelling

22

• As-connected-as-possible (ACAP) labelling
• Minimizes the total labelling cost

• Such that any reachable set of kernel (resp. neighborhood) nodes are connected in
the 1(resp. 0)-labelled subgraph

Graph Labelling

23

𝑐1

𝑘1 𝑘2

𝑛1

𝑓1

𝑓2

ACAP

• As-connected-as-possible (ACAP) labelling
• Minimizes the total labelling cost

• Such that any reachable set of kernel (resp. neighborhood) nodes are connected in
the 1(resp. 0)-labelled subgraph

Graph Labelling

24

𝑐1

𝑘1 𝑘2

𝑛1

𝑓1

𝑓2

ACAP

𝑐1

𝑘1 𝑘2

𝑛1

𝑓1

𝑓2

Not ACAP

• ACAP labelling as Node-Weighted Steiner Tree (NWST) problem
• Solution of ACAP labelling, if exists, can be found by NWST on an augmented graph

Graph Labelling

𝑘1 𝑘2

𝑛1

𝑐1 𝑐1, 𝑓1 𝑐1, 𝑓2 𝑐1, 𝑓1, 𝑓2

𝑓1 𝑓2 𝑐1, 𝑓1, 𝑓2

𝑐1 𝑓1 𝑓2 𝜋

Augmented Graph (see paper for details)

25

𝑐1

𝑘1 𝑘2

𝑛1

𝑓1

𝑓2

• ACAP labelling may not have a solution
• An example is a double-articulation node

Graph Labelling

26

𝑛1

𝑘2

𝑐1

𝑛2

𝑘1

• ACAP labelling may not have a solution
• An example is a double-articulation node

Graph Labelling

27

𝑛1

𝑘2

𝑐1

𝑛2

𝑘1

Cut 𝑐1 is critical to connect
the reachable kernel nodes

• ACAP labelling may not have a solution
• An example is a double-articulation node

Graph Labelling

28

𝑛1

𝑘2

𝑐1

𝑛2

𝑘1

Cut 𝑐1 is critical to connect
the reachable kernel nodes

𝑛1

𝑘2

𝑐1

𝑛2

𝑘1

𝑐1 is also critical to connect the
reachable neighborhood nodes

• ACAP labelling may not have a solution
• An example is a double-articulation node

• NWST would return a conflicting label of a cut/fill node

Graph Labelling

29

𝑛1

𝑘2

𝑐1

𝑛2

𝑘1

Cut 𝑐1 is critical to connect
the reachable kernel nodes

𝑛1

𝑘2

𝑐1

𝑛2

𝑘1

𝑐1 is also critical to connect the
reachable neighborhood nodes

• Iterative labelling

Graph Labelling

30

𝑛1

𝑘2

𝑐1

𝑛2

𝑘1 𝑘3

𝑓1 𝑐2 𝑓2

• Iterative labelling
• Greedily label double-articulation nodes

Graph Labelling

31

𝑛1

𝑘2

𝑛2

𝑘1 𝑘3

𝑓1 𝑐2 𝑓2Double articulation node 𝑐1

• Iterative labelling
• Greedily label double-articulation nodes

Graph Labelling

32

𝑛1

𝑘2

𝑐1

𝑛2

𝑘1 𝑘3

𝑓1 𝑐2 𝑓2Double articulation node

• Iterative labelling
• Greedily label double-articulation nodes

• Solve ACAP labelling (via NWST)

Graph Labelling

33

𝑛1 𝑛2

𝑘3

𝑓1 𝑐2 𝑓2

𝑘1 ,𝑐1, 𝑘2

• Iterative labelling
• Greedily label double-articulation nodes

• Solve ACAP labelling (via NWST)

Graph Labelling

34

𝑛1 𝑛2

𝑘3

𝑓1 𝑐2 𝑓2

𝑘1 ,𝑐1, 𝑘2

• Iterative labelling
• Greedily label double-articulation nodes

• Solve ACAP labelling (via NWST)

• Return the solution if no node has conflicting labels; otherwise greedily label
such node, and repeat

Graph Labelling

35

𝑛1 𝑛2

𝑘3

𝑓1 𝑐2 𝑓2

𝑘1 ,𝑐1, 𝑘2

Results
• Input shapes represented as voxels

• Cuts and fills computed by two different (monotonic) methods:

36

Results
• Input shapes represented as voxels

• Cuts and fills computed by two different (monotonic) methods:

37

Inflation/deflation

Results
• Input shapes represented as voxels

• Cuts and fills computed by two different (monotonic) methods:

38

Inflation/deflation

Results
• Input shapes represented as voxels

• Cuts and fills computed by two different (monotonic) methods:

39

Inflation/deflation

Results
• Input shapes represented as voxels

• Cuts and fills computed by two different (monotonic) methods:

40

Inflation/deflation

Results
• Input shapes represented as voxels

• Cuts and fills computed by two different (monotonic) methods:

41

Inflation/deflation Opening/closing

Results
• Hip model (inflation/deflation cuts and fills)

42

Components:

Handles:

Cavities:

Geometric cost:

Input Only Cutting Only Filling Ours

1

2

0

0

1

0

0

756

1

0

0

6591

0

0

397

1

Results
• Heart CT Scan (inflation/deflation cuts and fills)

43

Components:

Handles:

Cavities:

Geometric cost:

Input OursGreedy [Ju 07]

2

215

13

0

1

0

0

902

1

4

0

2738

1

0

0

N/A

Handles

Handle
body

Results
• Sorghum Panicle CT Scan (inflation/deflation cuts and fills)

44

Components:
Handles:

Cavities:

Ours

1749

871

1

22

16

0

Input

20

10

0

Lower bound

Timing
5.5 s

Results
• Corn root CT Scan (inflation/deflation cuts and fills)

45

Components:

Handles:

Cavities:

Ours

1958

2117

158

32

3

0

Input

32

0

0

Lower bound

Timing
35.1 s

Conclusion
• Summary: a global optimization algorithm which attempts to maximally

simplify topology, while minimizing geometric change

46

Conclusion
• Summary: a global optimization algorithm which attempts to maximally

simplify topology, while minimizing geometric change

• Future work:
• Explore more effective and efficient optimization methods

• Compute better cuts and fills

• Allow user control over the target topology

47

Conclusion
• Summary: a global optimization algorithm which attempts to maximally

simplify topology, while minimizing geometric change

• Future work:
• Explore more effective and efficient optimization methods

• Compute better cuts and fills

• Allow user control over the target topology

• Website: https://danzeng8.github.io/topo-simplifier/
• Paper, code, examples, discussion

48

https://danzeng8.github.io/topo-simplifier/

